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ABSTRACT
Smartphone applications that continuously monitor user
context are becoming popular for applications ranging
from health-care to lifestyle monitoring to participatory
sensing. Unfortunately, these emerging apps make poor
use of the already scarce energy resources because they
continually wake the CPU and other mobile device com-
ponents for periodic sensing, computation, and commu-
nication. We report measurements of three representative
Android smartphone apps that show 77% of the battery is
wasted by constantly waking up the device components.
Moreover, we find that existing power optimization tech-
niques provide only modest benefits for this new class
of apps. Using a trace-driven study of the three apps,
we estimate that reducing 3G overhead, offloading to
the cloud, offloading 3G traffic to WiFi, and using sen-
sor duty cycling, can reduce only 5-10% of the energy
costs. For greater energy savings, we make the case for
platform support in the form a sensor hub. Sensor hubs
are dedicated subsystems that interface with the sensors
and radios; they use a micro-controller to support low
cost sensing and computation. Our trace-driven analysis
shows that sensor hubs can reduce the power consump-
tion of continuous monitoring apps by 61%.

1. INTRODUCTION
Smartphone applications that are always on and contin-

uously monitoring the ambient environment are becom-
ing popular for a diverse range of services. For example,
Tasker [10] is a paid Android app with over 250,000 down-
loads that provides simple context-aware services, such
as automatically setting the ringer to silent mode in select
locations and during meetings. The popularity of Tasker
has spawned similar applications such as Locale [6], and
Smart Actions [2]. More ambitious sensing apps continu-
ously monitor user mobility to evaluate Parkinson patients
(Ambulation [4]), help users lead a healthier lifestyle
by avoiding routes with junk food restaurants (the PEIR
project [19]), and encourage users to be more social and
active (BeWell [16]). We expect users to run more of this
kind of app over time given the tremendous potential of

monitoring human behavior and the environment.
Unfortunately, applications that require continuous mon-

itoring are a heavy drain on the mobile’s battery. We
collect and analyze power traces for three representative
applications: a healthcare app [1], a lifestyle monitoring
app [4], and a participatory sensing app [7]. We find that
only a small fraction (23%) of the energy is consumed
for actual computation, networking, and sensing. The
remaining energy is wasted in wakeup overhead, either
waking up the CPU or the network interface. The result
is that running these apps together will drain 90% of the
battery in 8.2 hours, even when the phone is not otherwise
being used. This power profile is unlike that of tradi-
tional foreground apps, such as YouTube and AngryBirds,
which consume more power but waste much less energy
in overhead for the same total energy consumption.

Our measurements suggest that continuous monitor-
ing apps can run up to four times longer on a single
charge if they use energy efficiently. To see which power-
saving techniques have the most potential for savings,
we conduct a trace-driven study to estimate the benefits
of computational offloading [15, 23], offloading cellular
data to WiFi [12], and using fast dormancy [18]. These
are the techniques in the literature that have shown good
power savings with traditional applications. Yet we find
that none of these techniques provides more than 10% im-
provement in power consumption for our three continuous
monitoring applications. This is primarily because exist-
ing techniques do little to reduce the overhead incurred in
waking the CPU.

We conclude that new platform support is needed to
run continuous sensing apps in a power-efficient manner.
The form of support that we investigate in this paper is a
dedicated micro-controller that interfaces with the sensors
and the 802.11 radio. This sensor hub aims to efficiently
support continuous monitoring applications by (1) allow-
ing sensing even when the CPU is asleep, and buffering
sensor data for further processing; (2) processing small
computational tasks without waking up the CPU; and
(3) implementing cheaper WiFi maintenance. Several re-
search and industry efforts have shown the feasibility of
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adding sensor processing firmware to micro-controllers
and integrating them with smartphones [21, 5].

We extend our trace-driven analysis to estimate the
benefits of sensor hubs by micro-benchmarking the real-
time performance of a matrix-based sensor processing
algorithm on an MSP430 micro-controller as a proxy
for a sensor hub. We find that a sensor hub can reduce
power consumption of the three representative apps by
61% and reclaim the bulk of the wasted energy. For
greater gains that enable continuous monitoring apps to
run well, research must overcome two key limitations of
sensor hubs: they do not reduce the power consumption
of the network interface, nor do they reduce the cost of
the sensors themselves. Both factors matter, as real world
applications often make use of expensive sensors such as
GPS and often communicate with the cloud. While sensor
costs will only be improved with the development of more
efficient sensors, we believe sensor hubs can be adapted
to help reduce 802.11 overhead and further improve the
efficiency of continuous monitoring workloads.

2. MEASURED POWER PROFILES
We study the power characteristics of three continuous

monitoring applications:
Ambulation [4] is a health monitoring application to

monitor patients with mobility-affecting chronic diseases
such as Parkinsons. The app classifies user’s daily move-
ments using data from WiFi, accelerometer, and the GPS.

Acoustic Monitoring [1] is a lifestyle monitoring ap-
plication that periodically samples audio data to make
sophisticated inferences about human activity.

Mobiperf [7] is a participatory sensing application that
allows users to visualize the network performance at a
given location. The app periodically measures the 3G
network performance for a user and uploads these mea-
surement, along with coarse-grained location information,
to a server.

We chose these applications to study because they cover
multiple domains and engage all three mobile platform
components—sensors, processor, and network. Further,
all of the applications periodically upload data to the
cloud, either for processing or for visualization.

2.1 Methodology
We conduct all our experiments on Nexus 1 phones that

run Android 4.0; the phone is equipped with 802.11 WiFi
interface and 3G service provided by T-Mobile. We use
the PowerTutor tool [9] to measure power consumption
at a 1 second granularity, logging the power of each com-
ponent: the CPU, the network interface, the sensors, the
LCD, and the GPS. To validate the accuracy of this tool,
we used a Power Monitor [8] in a tethered environment.

For our experiment, we needed to extend PowerTutor
with more fine-grained accounting. PowerTutor provides
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Figure 1: Continuous
monitoring experiment.
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Figure 3: Comparing the active times of the contin-
uous monitoring vs the foreground experiment. The
foreground application is active for 2 1-hour sessions.

the CPU power of each application, including the system
power consumption. For the network, we log the amount
of data sent/received by each app at 1-second granular-
ity, and charge the applications an equal fraction of the
network cost for that second. WiFi and 3G networks also
incur a set-up and tear-down cost, consuming a significant
portion of the network power [13]. We use the application
logs to proportionally allocate the set-up/tear-down cost
to the applications.

Accounting for the sensor power consumption is more
difficult. Sensor measurements require the CPU to be ac-
tive. Even if the sensor measurement takes only a fraction
of a second, waking up the CPU consumes considerably
more power due to wake-locks [20]. We assign this CPU
power consumption to the application that requested the
sensor reading, but only if the CPU was idle before the
sensor reading.

2.2 Workloads
Continuous Monitoring Experiment: We run Ambula-

tion, Acoustic Monitoring, and the Mobiperf app simul-
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taneously on the phone. This workload mimics a future
with popular continuous monitoring apps, and allows op-
portunities to save energy with existing techniques by
coordinating app activity. In this experiment one of the
authors carries the phone with them for 3 regular work
days and the PowerTutor application logs the power trace.
The phone’s WiFi is authenticated to connect to both the
users home and work WiFi. Each trace is logged until
90% of the battery is discharged. The average trace length
is 8.2 hours. The phone uses WiFi by default, and the 3G
network when WiFi is not available.

Foreground experiment: We measure the power con-
sumption of two popular foreground apps: YouTube and
AngryBirds. We run the foreground application one after
the other for 30 minutes each for two sessions, and the
phone remains idle for the rest of the experiment. As be-
fore, the phone is carried through regular work days and
has access to work and home WiFi. Also as before, we
collect power traces until 90% of the battery is discharged.
The average trace length is 8.4 hours.

2.3 Power Profile Results
Figure 1 shows the power profile of the continuous

monitoring experiment. Nearly half of the power (49%)
is spent on sensing. The CPU only consumes 22% of the
total energy due to the low computational needs of the
three applications. The apps use all three components
(sensors, network, and CPU), but to varying degrees.

Figure 2 shows the energy distribution of the fore-
ground experiment. Over 50% of the energy is spent
on display, and no energy is spent on sensing. While
YouTube is network centric with little CPU consumption,
AngryBirds is CPU-intensive with little networking. Note
that the total energy spent by both experiments are about
the same (both run until 90% of the battery is discharged).
In summary, while the display is the most expensive re-
source for foreground applications, for the continuous
monitoring applications sensing uses the most power.

To dig deeper into the differences between foreground
and continuous monitoring applications, we plot the active
times of the device for one example day. We divide the
trace into 5 minute slots. We consider the device to be
active during a slot if it draws more than the base power
for at least 1 second in the 5 minute period.

Figure 3 shows the active times for both the continuous
monitoring and the foreground experiment. Although the
total power consumption is the same, the power profiles
look markedly different. In the continuous monitoring
experiment, the sensor subsystem is active almost through-
out the trace and the CPU is active for large portions of the
trace. In the foreground experiment, the components are
active only when the foreground application is active (2
sessions, 1 hour each); the device is idle for large portions
of the trace. Varying the length of the time slots resulted

Figure 4: Quantifying the energy overhead. If the
application performs all its tasks contiguously, 77%
of the power can be saved.

in a quantitatively similar results (now shown here).
In summary, continuous monitoring applications re-

quire the device to be active almost all of the time even
though they are only intend to run for a small fraction of
the total time.

2.4 Estimating Wasted Power
Applications that frequently wake the CPU or the net-

work interface incur a large power overhead that repre-
sents wasted energy. To estimate this overhead, we use
our trace data to find the power that would be consumed
if all the application tasks were performed contiguously.
This execution is clearly not feasible as a real power-
saving strategy, since the apps need the sensor data to be
collected at regular intervals and not all at once. However,
it is informative for our goal of bounding overhead. In
effect, it gives the absolute minimum power required to
run each application as-is but with no wakeup overhead.

For the network, we measure the power consumed if
all application data were sent as one block. We exchange
the data over TCP to/from a known server, and repeat the
experiment for WiFi and 3G traffic. For the sensors, we
measure the power consumed to obtain sensor readings
continuously, the same number of times as the original
experiment (§2.2).

For computation, we identify the core computational
unit in the Acoustic Monitoring and the Ambulation ap-
plication. Acoustic monitoring performs feature selection
on the audio data, and the Ambulation app determines
if the GPS is needed for localization based on the ac-
celerometer reading and WiFi signature. We measure the
power consumption for running this core computation
continuously, the same number of times as the original
experiment. We ignore Mobiperf because it performs very
little computation.

We find (Figure 4) that the three applications need only
consume 23% of the expended power; i.e., 77% of the
power is wasted on overheads. This implies that the de-
vice could run almost 4 times longer if the applications
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Figure 5: Evaluating existing power optimization
techniques for continuous monitoring workloads.

ran as efficiently as possible. A large fraction of this over-
head is incurred by the sensing task; the three applications
perform frequent sensing, which requires the CPU to be
woken up often.

In contrast, the same experiment shows far less over-
head for the foreground workload. For the foreground
apps, network power consumption reduces by 7% when
all application data are sent contiguously. This modest
gain is because foreground applications have relatively
few short data transfers. The display power consumption
remains unchanged. Our analysis shows that the CPU
is in the high frequency mode continuously for 90% of
the active time, indicating that there is little overhead;
we are unable to more accurately measure the power for
contiguous computation without the source code.

3. A CASE FOR SENSOR HUBS

3.1 Existing power-saving techniques
Given its importance, researchers have proposed sev-

eral techniques to reduce smartphone power consumption.
They include: (1) cloud offloading [15, 23]; (2) offloading
cellular traffic to WiFi [12]; (3) reducing the 3G tail [12,
18, 22]; and (4) using low-power sensors to reduce the use
of high-power sensors [14]. We ignore (4), since the only
app using a high-cost sensor, Ambulation, already imple-
ments low cost location tracking by using acceleremeters
and WiFi scans to minimize GPS usage.

We evaluate the best case power benefits when using
each of these techniques:

Computational Offload: our apps offload all compu-
tation to the cloud. We assume that the applications ex-
change only 10% of the sensor data with the cloud to
perform the computation.

Fast dormancy: we assume that the 3G tail energy is
completely eliminated.

WiFi offload: we let all of the data sent over the 3G
interface be sent over the more efficient WiFi interface.
We assume that WiFi is always available.

Sensor duty cycling: we coordinate the wake up sched-
ules of the applications. The CPU still needs to wake up

at least once a minute.
Figure 5 shows the result of our trace-driven evalua-

tion. Disappointingly, most techniques provide less than
10% improvement in power consumption. Even if the
power reductions add up, the cumulative savings is at
most 22% (with WiFi offloading superseding fast dor-
mancy). The main reason that the benefit is modest is that
the techniques do little to reduce the CPU wakeup over-
head. Instead, we argue that a better solution to the power
problem for continuous monitoring apps is a low-power
co-processor platform that will allow the main CPU to
be idle for long periods of time. We call this platform a
sensor hub and describe it next.

3.2 Sensor hubs
A sensor hub is a dedicated subsystem that interfaces

with the sensors and radios, and serves as an intermedi-
ary between the main platform and the sensors. Sensor
hubs are ideally suited for reducing wakeup overhead be-
cause they allow sensing without waking the host CPU.
Our experiments on continuous sensing suggest that large
power savings can be had if applications perform sen-
sor measurements less frequently. However, application
functionality can be severely affected if sensor data is not
collected at the requisite frequency. Sensor hubs resolve
this tension by collecting and buffering sensor data that
applications fetch later when needed.

Moreover, sensor hubs can perform simple processing
to further reduce the need to wake up the CPU. For ex-
ample, many sensing applications [16, 1] compute simple
features from the sensor data such as min, max, or aver-
age over a sliding window. These computations can be
executed even on the simplest of micro-controllers; the
sensor hub can then wake up the CPU only under certain
thresholding conditions.

Figure 6 shows an example sensor hub architecture.
Sensor hub designs typically use of a micro-controller in
lieu of a microprocessor, because of its low cost and power
efficiency. For example, the MSP430 micro-controller
running at a maximum speed (1MHZ) draws 0.3mA of
current, an order of magnitude less than smartphones.
The micro-controller buses (12C and SPY) draw negli-
gible power and the MSP430 costs less than 25 cents.
Recent research has shown the feasibility of interfacing
smartphones with a MSP430 processor to perform sen-
sor measurements [21]. In addition, a number of com-
mercial sensor hubs are also available such as the Lapis
ML610Q792 [5] that are packaged for smartphones.

While using sensor hubs to offload CPU tasks is straight-
forward, we believe that sensor hubs can also be used to
reduce the network overhead. Connection maintenance
on WiFi networks is expensive [13], as the 802.11 connec-
tion requires that the NIC wake up frequently to check if
the access point has any packets buffered for it. Typically,
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Figure 6: The Sensor Hub
Architecture.

Figure 7: Compute power
to run a matrix-based algo-
rithm on a micro-controller.

Figure 8: Evaluating the power consumption
benefits of using a sensor hub.

the NIC checks for buffered packets every 100ms. By
delegating the management of the 802.11 connection to
an 802.11-capable sensor hub (such as the CC3000 Wi-Fi
MSP430), the maintenance can be performed at a much
lower power cost.

3.3 Benefits of sensor hubs
To estimate the power savings offered by a sensor hub,

we start by executing a representative sensor processing al-
gorithm on the popular MSP430 micro-controller (TI part
MSP430F5172). From a software-based IMU implemen-
tation, we use a matrix-based algorithm that updates pose
and heading estimates [3] using accelerometer and gyro-
scope data. We ran the micro-controller at .5 and 1 Mhz
which allowed the algorithm to process 50 and 100 sensor
updates per second, respectively. Figure 7 shows that the
micro-controller draws only 0.15mA processing 50 sensor
updates/second and 0.3mA at 100 updates/second.

By combining this data with our application traces, we
can estimate the benefits of buffering sensor readings, of-
floading computation, and reducing WiFi maintenance.
The trace data notes the times when the application ob-
tained sensor readings, when it performed computation,
and when it sent/received data. We assume that the ap-
plications offload both computation and sensor measure-
ments to the micro-controller, but wake up for each net-
work event. Further, we assume an 802.11 chipset that
allows the microcontroller to take over WiFi connection
maintainance when the main CPU is asleep.

Note that the radio and the sensors themselves still
consume the same amount of power as previously; the
sensor hub only reduces the CPU wakeup cost. Finally,
we assume that the sensor hub runs at maximum speed (1
Mhz) and, as in our measurements, draws 0.3mA.

Figure 8 shows the percentage power savings if a sensor
hub were used for the continuous monitoring experiment
(§2.2). Overall, a sensor hub reduces the power consump-

tion by 61%. It saves nearly 84% of the CPU cost, and
reduces the sensor cost by 68%. Note that the sensor hub
does not reduce the cost of the sensors themselves, so
expensive sensors such as GPS still draw considerable
power.

The reduction in network power consumption is much
more modest. The WiFi maintenance itself is only a small
part of the total network cost, and as a result sensor hubs
do not reduce the network cost substantially. Part of our
future research agenda is to explore WiFi data offload
to the sensor hubs themselves. It is unclear if in doing
so the communication performance will be sufficient for
continuous monitoring applications, and if meaningful
power reduction can be obtained.

4. RELATED WORK
The approach of using a tiered system for energy effi-

ciency has been used in several settings. For increasing
the idle time of expensive NICs, Somniliquy [11] relies
on a secondary embedded controller. Similarly, Wake on
wireless [24] uses a lower energy Bluetooth communica-
tion link to wake up the main network interface. Sorber et.
al [25] use a tiered system, with a sensor node embedded
in a PDA embedded in a laptop [25].

More recently, Priyantha et. al [21] designed a sensor
co-processor for smartphones, and report 95%+ reduction
of power consumption for a simple pedometer applica-
tion. Their system, along with commercial variants [5],
shows the ability of a sensor hub to reduce the overhead
of background sensing workloads. Our work expands
on Priyantha et. al in two ways. First, we quantify the
overhead for this class of applications and show that exist-
ing power optimization techniques only provide modest
benefits. Second, we do so by measuring a set of three
representative, real-world apps that include networking
and expensive sensors such as gyroscope and GPS, nei-
ther of which is easily optimized with a sensor hub. Our
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analysis suggests a useful but lower (61%) estimate of
the power savings offered by a sensor hub that is perhaps
more realistic.

An alternative to a sensor hub design is to embed buffer-
ing and inference support into the sensor themselves.
Such an approach is referred to as ”smart sensing” and
commercial versions exist (e.g.: The Micronas Hall-effect
sensors) This approach work well for special-purpose de-
vices, but scales poorly and suffers from not being as
programmable as a sensor hub.

Finally, Lin et. al [17] propose an automatic and trans-
parent way of distributing an application across the main
host and an embedded co-processor such as a sensor hub.
These and other techniques will be necessary to make
sensor hubs easy to program.

5. CONCLUSIONS
In this paper we characterize the power profile of a

new class of applications that require continuous moni-
toring of the environment. Using Android measurements,
we explore three representative continuous monitoring
applications that drain 90% of the phone battery within
8 hours, even when the phone is not actively used. A
trace-driven analysis showed that these applications only
spend a small fraction (23%) of their power doing useful
sensing, computing, and networking. The other 77% is
overhead. Using a trace-driven study we evaluated a num-
ber of power-saving techniques including cloud offload,
fast dormancy, WiFi offload, and a dedicated sensor hub.
Only the sensor hub provided substantial improvements in
efficiency (61%), with the others yielding 5-10% gains for
our measured workloads. However, the sensor hubs were
not able to significantly reduce the network or GPS cost.
We identified the idea of adding an always-on 802.11 net-
working capability to a sensor hub for improved platform
support as a research challenge.
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