
Using Taint Tracking to Improve Energy Efficiency of Always-on
Smartphone Apps

Haichen Shen (Student author), Aruna Balasubramanian, Anthony LaMarca, and David Wetherall
haichen@cs.washington.edu, arunab@cs.washington.edu, anthony.lamarca@intel.com, djw@cs.washington.edu

1. Motivation
Sensor monitoring apps on smartphones provide a va-

riety of services, ranging from muting the ringer in cer-
tain locations, to evaluating Parkinson patients, to en-
couraging people to avoid junk food. Unfortunately, sen-
sor apps often require continuous monitoring and are heavy
drain on the mobile’s battery. Since sensors are on the
same controller as the CPU, taking a sensor reading for
a few microseconds results in the CPU being awake for
hundreds of milliseconds.

To address this issue, researchers have proposed a sen-
sor hub to collect and process sensor data in an always-
on micro-controller, distinct from the main processor.
While these systems have been shown to be effective for
simple applications such as a pedestrian step counter, it
is unclear how much savings a sensor hub offers a com-
plex application. The issue is how the applications uses
sensor data. If applications buffer sensor readings and
process them periodically, they can easily be partitioned
to the sensor hub. However, if they process sensor data
as they are read, a sensor hub may not improve perfor-
mance. Without understanding sensor usage, it is diffi-
cult to design a general sensor hub architecture.

We propose that taint tracking is a useful tool in inves-
tigating this issue. By tainting sensor data as it is read,
we can track it through a running system and determine
when sensed data produces user-perceivable events. We
then can determine which sensor data contributed and
how old it was. We can also look at the algorithmic trans-
formation the data underwent. In this way, we can, with-
out performing a static code analysis, determine how ap-
plications make use of sensors and whether they would
be good candidates for optimization via a sensor hub.

2. Taint Tracking
We use taint tracking to systematically track data from

the sensor to a user-perceivable action. We adapt a sys-
tem called TaintDroid [1] to perform this tracking. Taint-
Droid is a privacy monitoring system that watches for
private information leaks over a network. Our goal is dif-
ferent, and we make several modifications to TaintDroid
accordingly. To track timeliness of data, our modified
TaintDroid assigns a unique tag to each tainted variable
for each sensor data; for example, the 2nd accelerome-
ter reading has a different tag than the 3rd. We also log
when the tainted variable is used in a user-perceivable
manner. In our implementation, we say a tainted variable
is user-visible if it is sent over the network, written to a
file, or displayed on the screen. As a result, our system

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Sensor usage frequency
Figure 1: The sensor usage of a pedometer app.

can track when sensor data is collected (based on tainting
a variable), and when sensor data contributes to a visi-
ble side-effect (based on the log). Most importantly, we
add the ability to track taints through control flow; Taint-
Droid only tracks taints through data flow. To add control
flow tainting, we identifying potential taint blocks, for
example, an if statement conditioned on a tainted value.
We then track the flow of sensor data through the taint
block. Tainting control flow is essential for sensing ap-
plications, because these applications often perform com-
putation based on the value of the sensor reading; for
example, based on whether the sensor reading is greater
than a threshold value. Since these computation do not
retain the actual sensor value, data flow taints alone is
insufficient.

Figure 1 show the results of our taint analysis on an
off-the-shelf pedometer app. As an example reading, the
point (30, 0.8) shows that 20% of the time, the app only
updates once in a user-perceivable manner after 30 con-
tiguous sensor readings. If the 30 contiguous readings
were buffered for those 20% cases, the application could
have reduced energy consumption by 95% for those cases.
3. Next Steps

We are currently analyzing many popular off-the-shelf
sensor applications using our tool. The goal of our anal-
ysis is to understand the energy implications of differ-
ent sensor hub tasks, for example, sensor data buffering,
simple sensor thresholding, etc, for a given application,
under varying scenarios. We believe that taint tracking is
a powerful tool for not only understanding sensor usage
in applications, but can also inform the design of system
architectures that leverage sensor hubs to improve energy
efficiency.

4. References
[1] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. In OSDI, 2010.

